Telegram Group & Telegram Channel
📱 Как кросс-валидация применяется к большим нейросетям (например, GPT-подобным моделям) с миллионами или миллиардами параметров

Полноценная k-фолд кросс-валидация в контексте таких моделей обычно непрактична из-за колоссальных затрат времени и вычислительных ресурсов. Однако есть ряд подходов, позволяющих сбалансировать проверку качества модели и реалистичность обучения:

❗️ Возможные стратегии

1. Уменьшенное значение k (Reduced k)

Часто используют просто отложенную выборку (hold-out) или 2-фолд кросс-валидацию. Иногда применяют случайные разбиения несколько раз вместо традиционных 5-10 фолдов.

2. Чекпойнты и частичное повторное использование весов

Хотя обучение на каждом фолде требует разных данных, можно:
🟠дообучать модель с уже натренированными весами,
🟠использовать подходы transfer learning или fine-tuning.

Это не полностью корректно, но снижает затраты.

3. Параллельное и распределённое обучение

Если есть достаточное количество ресурсов (кластер, TPU/облачные GPU), фолды можно обучать параллельно.

4. Субсэмплирование данных

При очень больших датасетах можно делать случайную подвыборку на каждом фолде. Это сохраняет распределение, но уменьшает общий объём обучающих данных.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/962
Create:
Last Update:

📱 Как кросс-валидация применяется к большим нейросетям (например, GPT-подобным моделям) с миллионами или миллиардами параметров

Полноценная k-фолд кросс-валидация в контексте таких моделей обычно непрактична из-за колоссальных затрат времени и вычислительных ресурсов. Однако есть ряд подходов, позволяющих сбалансировать проверку качества модели и реалистичность обучения:

❗️ Возможные стратегии

1. Уменьшенное значение k (Reduced k)

Часто используют просто отложенную выборку (hold-out) или 2-фолд кросс-валидацию. Иногда применяют случайные разбиения несколько раз вместо традиционных 5-10 фолдов.

2. Чекпойнты и частичное повторное использование весов

Хотя обучение на каждом фолде требует разных данных, можно:
🟠дообучать модель с уже натренированными весами,
🟠использовать подходы transfer learning или fine-tuning.

Это не полностью корректно, но снижает затраты.

3. Параллельное и распределённое обучение

Если есть достаточное количество ресурсов (кластер, TPU/облачные GPU), фолды можно обучать параллельно.

4. Субсэмплирование данных

При очень больших датасетах можно делать случайную подвыборку на каждом фолде. Это сохраняет распределение, но уменьшает общий объём обучающих данных.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/962

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.

Telegram and Signal Havens for Right-Wing Extremists

Since the violent storming of Capitol Hill and subsequent ban of former U.S. President Donald Trump from Facebook and Twitter, the removal of Parler from Amazon’s servers, and the de-platforming of incendiary right-wing content, messaging services Telegram and Signal have seen a deluge of new users. In January alone, Telegram reported 90 million new accounts. Its founder, Pavel Durov, described this as “the largest digital migration in human history.” Signal reportedly doubled its user base to 40 million people and became the most downloaded app in 70 countries. The two services rely on encryption to protect the privacy of user communication, which has made them popular with protesters seeking to conceal their identities against repressive governments in places like Belarus, Hong Kong, and Iran. But the same encryption technology has also made them a favored communication tool for criminals and terrorist groups, including al Qaeda and the Islamic State.

Библиотека собеса по Data Science | вопросы с собеседований from tr


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA